<i id="p68vv"><noscript id="p68vv"></noscript></i>
    <track id="p68vv"></track>

      <video id="p68vv"></video>
    <track id="p68vv"></track>
    <u id="p68vv"><bdo id="p68vv"></bdo></u>

  1. <wbr id="p68vv"><ins id="p68vv"><progress id="p68vv"></progress></ins></wbr>
    <code id="p68vv"></code>
      <output id="p68vv"><optgroup id="p68vv"></optgroup></output>
  2. 聚苯胺涂層技術:為博物館鋼制文物提供防腐蝕新方案 · 上
    2024-10-22 13:40:49 作者:PCI可名文化 來源:PCI可名文化 分享至:

     

     

    「摘 要

    因為從埃及 Al-Qala 軍事博物館獲得的鋼制矛頭具有重要的考古價值,所以本研究的目的是驗證在這些矛頭上應用無暇聚苯胺涂層的可行性,以保存并保護它們免受腐蝕。利用X射線衍射(XRD)、掃描電子顯微鏡(SEM)和能量色散X射線能譜(EDX)表征矛頭的化學成分和微觀結構。矛頭為鋼制結構,因為它們表面有氧化鐵涂層和其他腐蝕產物,所以需要在矛頭上電化學沉積一層無暇聚苯胺涂層,這種方法既快速又便宜。我們采用多種腐蝕測試來確定涂層的有效性,如電化學阻抗譜和動電位極化(PDP)讀數。

     

    鋼制矛頭的研究結果表明,在涂覆無暇聚苯胺后,其抗腐蝕能力有了顯著提高,這種涂層起到了屏障的作用,阻擋了水和其他腐蝕性物質,而且減緩了腐蝕副產物在矛頭上積聚。總之,我們的研究表明,無瑕疵的聚苯胺涂層可能是古代鋼鐵文物的一種有效防腐處理方法,而且這種方法簡單、廉價而且很容易擴展到大規模的保護工作中。

    關鍵詞:保存、環保涂層、腐蝕控制、矛頭、表面表征、考古鋼矛

    *關注我們,下期敬請期待!

    作者 | Mohamed M. Megahed 1, Noha H. Elashery, 

    Saleh M. Saleh & Ashraf M. El?Shamy

     

     

     

     

     

    一、概 述

     

     

     

     

     

    從考古挖掘中找到的鋼鐵物品必須經過有效的防腐處理,以確保能夠為后代保存它們1。本研究特別關注聚苯胺作為保護涂層的潛在用途,以保存如在 Al-Qala 埃及軍事博物館中發現的鋼制矛頭??脊胚z址經常出土包括矛頭、劍刃和各種武器在內的鋼鐵文物2。這些文物在科學界具有巨大的意義,揭示了古代文化及其技術進步3。

     

    然而,鋼鐵極易受到腐蝕,這對考古文物的長期保存構成了重大威脅,為了應對這一挑戰,保護涂層已經成為一種可行的解決方案,其中聚苯胺是一個很有前途的候選者4。聚苯胺是一種導電聚合物,因耐腐蝕特性而聞名,在保護各種金屬特別是鋼鐵方面已經證明了它的有效性5。許多研究已經努力探索了聚苯胺涂層在防止鋼制品腐蝕方面的潛力6。

     

    例如,對涂有聚苯胺的鋼片進行了鹽霧試驗,結果表明,與未涂有聚苯胺的鋼片相比,涂有聚苯胺的鋼片的腐蝕速度大大降低7。類似地,在不同環境中(包括高濕度和高污染環境),聚苯胺涂層保護鋼釘的研究也顯示了這種涂層在減輕腐蝕方面的有效性8

     

    有趣的是,我們還研究了聚苯胺涂層在保存古代鋼鐵文物(如中國武器)中的適用性9。這一發現強調了使用聚苯胺涂層作為一種非侵入性方法來保護具有歷史和考古意義的鋼鐵文物的可行性10此研究還探索了聚苯胺涂層在防止混凝土結構內鋼筋腐蝕方面的潛在應用11。結果表明,其腐蝕速率顯著降低,對結構耐久性有潛在益處12。

     

     

    此外,我們對在鹽水中長時間浸泡涂有聚苯胺的鋼表面進行了研究,結果證明了這種涂層即使在惡劣的環境中也有抗腐蝕的能力13??偠灾郾桨吠繉佑型蔀楸Wo古代鋼制文物(比如埃及Al-Qala軍事博物館的矛頭)免受腐蝕的有價值工具14,這些涂層的優點是易于通過各種方法(包括浸涂)進行涂抹,并且它們在各種條件下都能發揮效用15。雖然這一研究領域相對較新,但早期的研究結果令人鼓舞16。然而,還需要進一步研究才能充分理解聚苯胺涂層在保護行業中的長期影響17。特別是在考古研究的背景下,與古代文物的保存和防腐有關的歷史工作有著豐富而不斷發展的歷史18

     

    多年來,在保護文化遺產的堅定承諾和對材料科學不斷發展的理解的推動下,文物保護領域取得了重大進展。在此,我們深入探討了一些塑造這一迷人進展的歷史方面和顯著的貢獻。文物保護的根源可以追溯到具有文化和歷史文物價值的古代文明19,例如,古埃及和希臘文明采用了各種方法,比如把文物埋在墓穴中,或者使用蠟、油或樹脂等保護涂層來保護文物免受環境腐蝕。

     

    在19世紀和20世紀初,一些先驅考古學家和學者開始認識到系統保護措施的重要性20,其中挖掘特洛伊古城的海因里希·謝里曼通過仔細記錄和保存已發現的寶藏,這表現出對文物保護的決心21。我們今天所知的保護科學學科出現于20世紀中期,化學和材料科學等科學原理的結合徹底改變了文物保護措施,這標志著一種更加系統化、更科學的文物保護方法的開始22。

     

    在文物保護中使用聚合物涂層(如聚苯胺)是一個相對較新但前景廣闊的方法,聚苯胺具有具有導電性和保護性,在保護金屬文物(包括古代鋼制矛頭)方面備受關注23。這種創新方法提供了一種非侵入性的方式來保護這些歷史文物免受腐蝕和變質。隨著時間的推移,文物保護領域的發展得益于考古學家、文物保護人員、材料科學家和其他專家之間合作的增加24。

     

    國際博物館理事會(ICOM)和聯合國教科文組織等國際組織在促進知識交流和制定文物保護道德準則方面發揮了關鍵作用。雖然取得了重大進展,但是文物保存方向依然存在挑戰25。諸如保護涂層的長期穩定性和圍繞侵入性保護方法的道德考量等問題繼續推動著研究和辯論。無損檢測和成像等先進技術的結合為未來的考古研究提供了令人興奮的可能性26??傊?,文物保護和防腐的歷史歷程證明了人類保護文化遺產的決心27,從古代文明到現代科學創新,這一領域在不斷發展以確保子孫后代能夠通過保存古代文物來感嘆我們過去的豐富多彩。聚苯胺等尖端材料的融合突顯了保存措施的動態性質,為考古珍寶的保護帶來了光明的未來28。

     

     

     

    二、材料與方法

     

     

    2.1 材料

     

     

     

     

     

    2.1.1 鋼矛及其狀況描述

     

     

     

     

     

    在Al-Qala附近發現并現存于埃及軍事博物館的鋼制矛頭是一件構造精美、保存完好的文物。它是由優質鋼材制成的,且長度從6厘米到11厘米不等。矛頭的特點是在細長矛桿的末端有一個鋒利的尖頭,矛刃略微彎曲。專家們認為,鋼質武器可能起源于古埃及新王國時代(公元前1550-1070年),它可能是士兵和戰士在沖突時期使用的致命武器。因為矛頭揭示了古埃及的武器和技術,所以是一件重要的文物,而且矛頭的質量和設計顯示了當時高超的金屬加工和武器裝備技術。來自埃及 Al-Qala 軍事博物館的鋼制矛頭是一件能夠揭示我們之前文化的重要歷史文物,下表1提供了對埃及Al-Qala軍事博物館的同一個考古鋼矛研究的總結。

     

    圖 1. (a) 處理前受到腐蝕產物侵蝕的矛頭組 (b) 所研究矛頭的尺寸

     

     

     

     

     

    腐爛特性(如厚層紅褐色腐蝕產物的存在)會對所選文物產生影響,正如圖 1b 所示。我們對矛頭進行了調查,以了解它們使用了哪種合金鋼、是如何制造的以及在制造過程中留下了哪些腐蝕產物。并且使用金相顯微鏡、掃描電子顯微鏡(SEM)和能量色散光譜儀(EDS)、碳/硫分析儀和X射線衍射(XRD)實現這一目標。我們在OLYMPUS-PMTVC2D03043JAPAN金相顯微鏡的幫助下,可以無需先行蝕刻和拋光,即可對其中一個矛頭的橫截面進行了檢查29。


    為了進一步了解材料,我們還使用了配備能譜儀(EDS)的掃描電子顯微鏡(SEM)對同一材料進行了詳細研究。此外我們用碳/硫分析儀 ELTRA CS-2000確定矛頭中所用鋼合金的碳/硫比例。最后利用D8 高級 X 射線衍射儀 X (德國布魯克公司)對鋼表面的腐蝕產物進行XRD分析。

     

     

     

     

     

    2.1.2 媒介

     

    在這種情況下,選擇的腐蝕介質是模擬海水條件的3.5% NaCl溶液,這是為了使研究與古代鋼制品(如矛頭)可能遇到的現實情況保持一致。雖然ASTM D1384-87溶液通常用于模擬大氣腐蝕條件,但我們的目標是研究可能暴露在海水或海岸環境中的相關的文物且更具侵蝕性的腐蝕環境。古代文物通常暴露在各種復雜的歷史環境條件下,包括埋葬,陸地暴露,以及在某些情況下的海洋暴露。


    我們通過將矛頭置于3.5% NaCl溶液中,試圖模擬在漫長的歷史中可能影響這些文物的惡劣條件,尤其是當它們與海洋或海岸活動有關時。

     

    在海水模擬環境中研究矛頭的腐蝕行為,可以深入了解無暇聚苯胺涂層在比典型大氣腐蝕更具挑戰性的條件下的有效性。這種方法使我們能夠評估涂層對保護具有不同歷史和暴露概況的文物的適用性。一般來說,選擇3.5% NaCl介質是為了確保我們的研究與潛在的海洋或沿海歷史文物的相關性,并評估涂層在更具侵略性的腐蝕環境中的性能。

     

     

     

     

     

    2.2方法

     

     

     

     

     

    2.2.1 腐蝕技術

     

     

     

     

     

    我們使用一個普通的三電極Pyrex玻璃電池和連接到Autolab計算機的Autolab電位儀/恒流儀PGSTAT302N進行所需的電化學測量。將銀/氯化銀參比電極、鉑箔對電極和1cm2低碳鋼工作電極分別浸入有聚苯胺保護層和沒有聚苯胺保護層的3.5%氯化鈉中。隨后,我們在與OCP設備相同的實驗裝置中測量了電化學阻抗譜(EIS)和動電位極化。并且通過EIS 測量后獲得的電位極化曲線,研究了聚苯胺濃度對極化的影響。

     

    在電位范圍為-1600~200mV,速率為1mVs−1的且室溫條件下,我們對不同濃度的聚苯胺進行極化測量,而且通過分析陽極和陰極線性Tafel分支的交會點,可以確定腐蝕系統的腐蝕電流密度和腐蝕電位。此外,我們用Nova 1.10程序將所有阻抗數據擬合到適當的等效電路后,使用Tafel外推技術確定化合物的屏蔽效果。在電化學分析之后,我們利用掃描電子顯微鏡(SEM)和能量色散x射線光譜儀(EDS)對文物的低碳鋼表面進行了形態和化學表征。最后。我們使用了具有Cu-K輻射的X射線衍射儀和X射線熒光NITON/XL8138來研究雕塑腐蝕產物樣品中元素組成。這些評估是經過深思熟慮的30。

     

     

     

     

     

    2.2.2 實驗設置、程序和測試方案

     

     

     

     

     

    在3.5% NaCl(氯化鈉)溶液中,對矛頭進行腐蝕測試需要明確的實驗設置、步驟和測試方案。下面將詳細概述如何進行這種類型的腐蝕測試。

     

    實驗設置和樣品收集:實驗設置從材料和設備的準備開始。首先,我們對即將進行測試的考古鋼矛頭進行模擬。隨后,將3.5g氯化鈉溶解于100ml蒸餾水中,在玻璃燒杯中制備成3.5% NaCl溶液。然后,我們組裝腐蝕測試的關鍵部件(電化學電池),這種電池通常包括一個工作電極(矛頭)、一個參比電極(Ag/AgCl)和一個對電極(鉑電極)。為了控制和測量電化學參數,我們采用了恒電位儀/恒流儀并且使用電化學軟件用來監控恒電位儀/恒流儀和收集數據。此外,我們還使用重物或夾子將矛頭固定在電化學電池內所需的位置,而且確保樣品表面沒有污染物、油或殘留物,這是樣品制備的重要步驟。

     

    在我們的研究中,我們從埃及Al-Qala軍事博物館購買了鋼制矛頭,由于這些矛頭具有重要考古意義的文物,所以需要保存和防止它們腐蝕。從這些矛頭中采集樣本時需要遵循標準程序,以維護文物的完整性。我們選中軍事博物館收藏的一組可以追溯到古埃及新王國時代(約公元前1550-1070年)且具有重要歷史意義的鋼制矛頭進行分析。為了表征樣品,我們選擇能夠代表矛頭整體狀況的區域,并對鋼材表面的小塊區域進行了精心制備。

     

    我們采用適當的方法從這些制備好的區域中收集樣品,并使用掃描電子顯微鏡(SEM)和能量色散X射線光譜儀(EDX)檢查表面的小部分,從而提供有關化學成分和微觀結構的信息。然后將收集到的樣品進行了各種表征技術,包括X射線衍射(XRD)、SEM和EDX,以深入了解其化學成分和微觀結構,這些技術能夠評估矛頭的現狀,并確認任何腐蝕產物。

     

    在初步表征之后,我們進行了腐蝕測試,將矛頭浸入3.5%的NaCl溶液中以模擬腐蝕環境,從而評估聚苯胺涂層保護矛頭的有效性。在整個樣品收集過程中,我們都非常謹慎以確保采集過程不會損害矛頭,從而保持矛頭的完整性。最后,我們認識到維護這些文物的歷史和考古價值的重要性,因此進行了科學分析,以加強對這些文物的保護。

     

     

     

     

     

    2.2.3 實驗程序

     

    我們將制備好的樣品浸入3.5%的NaCl溶液中,待系統在特定時間內達到平衡后,進行開路電位(OCP)測量。隨后,我們使用恒電位儀/恒流儀記錄OCP。對于電化學阻抗譜(EIS):在一定頻率范圍內向工作電極施加一個小的擾動信號(如正弦電壓),以測量每個頻率下的阻抗。在EIS實驗后,分析得到的阻抗數據以提取有關腐蝕特性的信息,包括極化電阻和電容。在動電位極化(PDP)實驗中,將工作電極的電位從初始電位掃至最終電位,并測量每個電位點的電流響應,從而得到極化曲線用于測定腐蝕速率、腐蝕電位和其他相關的電化學參數。我們還使用專業軟件對電化學數據進行分析,以確定腐蝕速率、極化電阻和其他電化學參數。

     

    此外,我們對各種測試和方法的結果進行了比較分析,以全面了解矛頭的腐蝕行為,并且提供了實驗的具體細節,識別基于樣品類型、可用的電化學設備和研究目標等因素的潛在變化。值得注意的是,我們還討論了觀察到的腐蝕機制以及 NaCl 溶液對模擬樣品耐腐蝕性的影響,而且將與保存或保護矛頭腐蝕有關的任何觀察或發現也納入分析中。

     

     

     

     

     

    2.3 保護程序

     

     

     

     

     

    使用聚苯胺涂層對古代鋼制矛頭進行保存和防腐保護是一項細致而高效的工作。以下是這種保存方法所涉及的關鍵步驟和程序。

     

     

     

     

     

    2.3.1材料與設備


    古老的鋼制矛頭、所需濃度的聚苯胺溶液(例如10 ppm,、25 ppm、50 ppm或100 ppm)、適合浸泡的容器手套和防護裝備,干凈的無絨布及通風的工作區。

     

    程序:

     

    準備矛頭仔細檢查每一個古老的鋼制矛頭,以評估其狀況和腐蝕程度,并且記錄任何可見的損壞,如生銹或表面污染物。如有必要,使用軟毛刷或布輕輕地進行清潔,以清除松散的碎片或污垢,但是避免使用可能損壞文物的侵略性清潔方法。

     

    聚苯胺濃度的選擇:根據每個鋼矛頭的具體需要,確定合適的涂層聚苯胺濃度。濃度可能會根據文物的狀況和腐蝕敏感性而變化。

     

    浸泡在聚苯胺溶液中:準備裝滿所選聚苯胺溶液的容器,將每個鋼矛頭浸入到聚苯胺溶液中,并且確保它們完全被淹沒。浸泡時間可根據所需的保護級別而有所不同。需要確保矛頭是懸掛的,而不是靠在容器的底部或側面,以防止涂層不均勻。

     

    監測和干燥:在浸泡過程中定期檢查文物,以監測進展。一旦達到所需的涂層時間后,小心地將矛頭從聚苯胺溶液中取出,讓矛頭在通風良好的地方風干,但是避免將它們暴露在陽光直射或極端溫度下。

     

    檢查和附加涂層(如有必要):在干燥之后,評估聚苯胺涂層的質量和覆蓋率。如果需要達到所需的保護水平,可再涂一層。為了獲得最佳效果,可能需要重復浸泡和干燥的步驟。

     

    記錄和存儲:記錄保存過程,包括聚苯胺濃度、浸泡時間及任何有關涂層效果的觀察。將保存好的鋼制矛頭存放在溫度和濕度穩定的可控環境中,以防止進一步腐蝕。此外,也可以使用帶有穿孔的聚乙烯袋創造一個可控的微環境。

     

    定期檢查和維護:定期檢查保存的矛頭是否有腐蝕或變質的跡象。如有必要,可重復保護程序,以維持涂層的保護。

     

    2.3.2 重要的注意事項

     

    保護程序應由受過培訓的文物保護人員或具有文物保護專業知識的專業人員執行。聚苯胺的濃度和浸泡時間的選擇應基于仔細評估,如果可能的話,應咨詢專家。我們應該控制保存條件,包括溫度、濕度和光照,以防止進一步腐蝕。聚苯胺涂層保護古代鋼制矛頭是一種非侵入性的有效方法,可確保其長久保存,供后人研究和欣賞。

     

    -未完待續,下篇敬請期待-

    #參考文獻(滑動查看):

     

    1. Frank, H. Good year, archaeological site science. pp 131–132 (1988).

    2. Yang Sook, K. & Istvan, S. Cleaning of corroded iron artifacts using pulsed TEA CO2 and Nd: YAG lasers. J. Cult. Herit. 4, 129–133 (2003).

    3. Hefter, G., North, A. & Tan, S. Organic corrosion inhibitors in neutral solutions; part-I Inhibition of steel, copper, and aluminum by straight chain carboxylates. Corrosion 53(8), 657–667. https://doi.org/10.5006/1.3290298 (1997).

    4. Alkharafi, F. M., El-Shamy, A. M. & Ateya, B. G. Comparative effect of tolytriazole and benzotriazole against sulfide attack on copper. Int. J. Electrochem. Sci. 4, 1351–1364 (2009).

    5. Mirambet, F., Reguer, S., Rocca, E., Hollner, S. & Testemale, D. A. Complementary set of electrochemical and X-ray synchrotron techniques to determine the passivation mechanism of iron treated in a new corrosion inhibitor solution specifically developed

    for the preservation of metallic artifacts. Appl. Phys. A 99, 341–349 (2010).

    6. Sherif, E. M., Abbas, A. T., Gopi, D. & El-Shamy, A. M. Corrosion and corrosion inhibition of high strength low alloy steel in 2.0 M sulfuric acid solutions by 3-amino-1,2,3-triazole as a corrosion inhibitor. J. Chem. https://doi.org/10.1155/2014/538794 (2014).

    7. Bethencourt, M., Botana, F. J., Calvino, J. J., Marcos, M. & Rodriguez-Chacon, M. A. Lanthanide compounds as environmentally friendly corrosion inhibitors of aluminum alloys: A review. Corros. Sci. 40(11), 1803–1819. 00077-8 (1998).

    8. Sabirneeza, A. A. F., Geethanjali, R. & Subhashini, S. Polymeric corrosion inhibitors for iron and its alloys: A review. Chem. Eng. Commun. 202(22), 232–244. https://doi.org/10.1080/00986445.2014.934448 (2015).

    9. Sherif, E. M., Abbas, A. T., Halfa, H. & El-Shamy, A. M. Corrosion of high strength steel in concentrated sulfuric acid pickling solutions and its inhibition by 3-amino-5-mercapto-1, 2, 3-triazole. Int. J. Electrochem. Sci 10, 1777–1791 (2015).

    10. Dillmann, P., Beranger, G., Piccardo, P. & Matthiessen, H. Corrosion of Metallic Heritage Artefacts: Investigation, Conservation, and Prediction of Long-Term Behavior (Elsevier, 2014).

    11. El-Shamy, A. M., Shehata, M. F. & Ismail, A. I. M. Effect of moisture contents of bentonitic clay on the corrosion behavior of steel pipelines. J. Appl. Clay Sci. 114, 461–466. https://doi.org/10.1016/j.clay.2015.06.041 (2015).

    12. Singh, P., Srivastava, V. & Quraishi, M. A. Novel quinoline derivatives as green corrosion inhibitors for mild steel in acidic medium: electrochemical, SEM, AFM, and XPS studies. J. Mol. Liquids 216(1), 164–173. https://doi.org/10.1016/j.molliq.2015.12.086 (2016).

    13. Farag, H. K., El-Shamy, A. M., Sherif, E. M. & El Abedin, S. Z. Sonochemical Synthesis of Nanostructured ZnO/Ag Composites in an Ionic Liquid. Zeitschrift für Physikalische Chemie 230(12), 1733–1744. https://doi.org/10.1515/zpch-2016-0777 (2016).

    14. Elsayed, E. M., Eessaa, A. K., Rashad, M. M. & El-Shamy, A. M. Preparation and characterization of ZnO thin film on anodic Al2O3as a substrate for several applications. Egypt. J. Chem. 65(10), 119–129. https://doi.org/10.21608/ejchem.2022.110382.5021 (2022).

    15. El-Shamy, A. M., Farag, H. K. & Saad, W. M. Comparative study of removal of heavy metals from industrial wastewater using clay and activated carbon in batch and continuous flow systems. Egypt. J. Chem. 60(6), 1165–1175. https://doi.org/10.21608/ejchem.2017.1606.1128 (2017).

    16. Liu, A. M., Ren, X. F., Wang, B., Zhang, J., Yang, P. X., Zhang, J. Q., An, M. Z. Complexing agent study via computational chemistry for environmentally friendly silver (2014).

    17. El-Shamy, A. M., Shehata, M. F., Metwally, H. I. M. & Melegy, A. Corrosion and corrosion inhibition of steel pipelines in montmorilonitic soil filling material. Silicon 10(6), 2809–2815. https://doi.org/10.1007/s12633-018-9821-4 (2017).

    18. Sanatkumar, B., Nayak, J. & Shetty, N. Influence of 2-(4-chlorophenyl)-2-oxoethyl benzoate on the hydrogen evolution and corrosion inhibition of 18 Ni 250 grade weld aged maraging steel in 1.0 M sulfuric acid medium. Int. J. Hydrog. Energy 37(11), 9431–9442. https://doi.org/10.1016/j.ijhydene.2012.02.165 (2012).

    19. Giumlia, M. A., Williams, A. Studi metallografici ‘in situ’ sull’armatura della Basilica della Beata Vergine delle Grazie, Udine, Aquileia Nostra, LXXV Udine, Aquileia, 394–422 (2004).

    20. El-Shamy, A. M. Control of corrosion caused by sulfate-reducing bacteria. In Microbes in process, pp. 337–362 (2014).

    21. Scharff, W. & Huesmann, I. A. Accelerated decay of metal soil finds due to soil pollution. Metal 95, 17–20 (1997).

    22. Ateya, B. G., Al Kharafi, F. M., El-Shamy, A. M., Abdalla, R. M. Electrochemical oxidation of hydrogen sulfide in geothermal fluids under high temperature and pressure. In ACS National Meeting Book of Abstracts 2008 236th National Meeting and Exposition of the American Chemical Society, ACS 200817 August 2008 through 21 August (2008).

    23. Ateya, B. G., Alkharafi, F. M., El-Shamy, A. M., Saad, A. Y. & Abdalla, R. M. Electrochemical desulphurization of geothermal fluids under high temperature and pressure. J. Appl. Electrochem. 39, 383–389. https://doi.org/10.1007/s10800-008-9683-3 (2009).

    24. Abdelshafeek, K. A., Abdallah, W. E., Elsayed, W. M., Eladawy, H. A. & El-Shamy, A. M. Vicia faba peel extracts bearing fatty acids moieties as a cost-effective and green corrosion inhibitor for mild steel in marine water: Computational and electrochemical

    studies. Sci. Rep. 12(1), 20611. https://doi.org/10.1038/s41598-022-24793-3 (2022).

    25. Abd Elkarim, A. M., El-Shamy, A. M., Megahed, M. M. & Kalmouch, A. Evaluation of the inhibition efficiency of a new inhibitor on leaded bronze Statues from Yemen. Arctic J. 71(1), 2–33 (2018).

    26. Cano, E. et al. Electrochemical characterization of organic coatings for protection of historic steel artifacts. J. Solid State Electr. 14, 453 (2010).

    27. Eessaa, A. K., El-Shamy, A. M. & Reda, Y. Fabrication of commercial nanoporous alumina by low voltage anodizing. Egypt. J. Chem.61(1), 175–185. https://doi.org/10.21608/ejchem.2017.2189.1175 (2018).

    28. Satri, V. Green Corrosion Inhibitors: Theory and Practice (Wiley, 2011).

    29. El-Shamy, A. M., Abdelfattah, I., Elshafie, O. I. & Shehata, M. F. Potential removal of organic loads from petroleum wastewater and its effect on the corrosion behavior of municipal networks. J. Environ. Manag. 219, 325–331. https://doi.org/10.1016/j.jenvm

    an.2018.04.074 (2018).

    30. Elban, W. L., Borst, M. A., Roubachewsky, N. M., Kemp, E. L. & Tice, P. C. Metallurgical assessment of historic wrought iron: US custom house, wheeling, West Virginia. Assoc. Preserv. Technol. 29, 27–34 (1998).

    31. Bramfitt, B. L., Benscoter, A.O. Metallographer’s guide: Practices and procedures for irons and steels, USA (2002).

    32. Bussell, M. Use of iron and steel in buildings. In Structures & Construction in Historic Building Conservation (ed. Forsyth, M.) 173–191 (Blackwell Publishing Ltd, 2007).

    33. Reda, Y., El-Shamy, A. M. & Eessaa, A. K. Effect of hydrogen embrittlement on the microstructures of electroplated steel alloy 4130. Ain Shams Eng. J. 9(4), 2973–2982. https://doi.org/10.1016/j.asej.2018.08.004 (2018).

    34. Al-Otaibi, M. S. et al. Corrosion inhibitory action of some plant extracts on the corrosion of mild steel in acidic media. Arab. J. Chem. 7, 340–346 (2014).

    35. El-Kashef, E., El-Shamy, A. M., Abdo, A., Gad, E. A. M. & Gado, A. A. Effect of magnetic treatment of potable water in looped and dead-end water networks. Egypt. J. Chem. 62(8), 1467–1481. https://doi.org/10.21608/ejchem.2019.7268.1595 (2019).

    36. Zajec, B., Leban, M. B., Lenart, S., Gavin, K. & Legat, A. Electrochemical impedance and electrical resistance sensors for the evaluation of anticorrosive coating degradation. Corros. Rev. 35, 65–74 (2017).

    37. Abbas, M. A., Zakaria, K., El-Shamy, A. M. & El Abedin, S. Z. Utilization of 1-butylpyrrolidinium chloride ionic liquid as an ecofriendly corrosion inhibitor and biocide for oilfield equipment: combined weight loss, electrochemical and SEM studies Z. Phys. Chem. 235(4), 377–406. https://doi.org/10.1515/zpch-2019-1517 (2019).

    38. Xia, D. H. et al. Assessing atmospheric corrosion of metals by a novel electrochemical sensor combining with a thin insulating net using electrochemical noise technique. Sens. Actuat. B Chem. 252, 353–358 (2017).

    39. Shehata, M. F., El-Shafey, S., Ammar, N. A. & El-Shamy, A. M. Reduction of Cu+2 and Ni+2 ions from wastewater using mesoporous adsorbent: Effect of treated wastewater on corrosion behavior of steel pipelines. Egypt. J. Chem. 62(9), 1587–1602. https://doi.org/10.21608/ejchem.2019.7967.1627 (2019).

    40. Scott, D. A. & Eggert, G. Iron and Steel in Art: Corrosion, Colorants, Conservation 145–147 (Archetype Publications, 2009).

    41. El-Shamy, A. M., Soror, T. Y., El-Dahan, H. A., Ghazy, E. A. & Eweas, A. F. Microbial corrosion inhibition of mild steel in salty water environment. Mater. Chem. Phys. 114(1), 156–159. https://doi.org/10.1016/j.matchemphys.2008.09.003 (2009).

    42. Zohdy, K. M., El-Shamy, A. M., Gad, E. A. M. & Kalmouch, A. The corrosion inhibition of (2Z,2′Z)-4,4′-(1,2-phenylene bis (azanediyl)) bis (4-oxobut-2-enoic acid) for carbon steel in acidic media using DFT. Egypt. J. Pet. 28(4), 355–359. https://doi.org/10.1016/j.ejpe.2019.07.001 (2019).

    43. Ma, C. et al. Electrochemical noise monitoring of the atmospheric corrosion of steels: Identifying corrosion form using wavelet analysis. Corros. Eng. Sci. Technol. 52, 432–440 (2017).

    44. Reda, Y., El-Shamy, A. M., Zohdy, K. M. & Eessaa, A. K. Instrument of chloride ions on the pitting corrosion of electroplated steel alloy 4130. Ain Shams Eng. J. 11, 191–199. https://doi.org/10.1016/j.asej.2019.09.002 (2020).

    45. Cano, E., Lafuente, D. Corrosion inhibitors for the preservation of metallic heritage artifacts. In Corrosion and conservation of cultural heritage metallic artefacts; Elsevier: New York, NY, USA, 570–594 (2013).

    46. Reda, Y., Zohdy, K. M., Eessaa, A. K. & El-Shamy, A. M. Effect of plating materials on the corrosion properties of steel alloy 4130. Egypt. J. Chem. 63(2), 579–597. https://doi.org/10.21608/ejchem.2019.11023.1706 (2020).

    47. Mohamed, W. A. & Mohamed, N. M. Testing coatings for enameled metal artifacts. Int. J. Conserv. Sci. 8, 15–24 (2017).

    48. Mohamed, O. A., Farghali, A. A., Eessaa, A. K. & El-Shamy, A. M. Cost-effective and green additives of pozzolanic material derived from the waste of alum sludge for successful replacement of Portland cement. Sci. Rep. 12(1), 20974. https://doi.org/10.1038/s41598-022-25246-7 (2022).

    49. Shehata, M. F., El-Shamy, A. M., Zohdy, K. M., Sherif, E. S. M. & El Abedin, S. Z. Studies on the antibacterial influence of two ionic liquids and their corrosion inhibition performance. Appl. Sci. 10(4), 1444. https://doi.org/10.3390/app10041444 (2020).

    50. El-Shamy, A. M., El-Hadek, M. A., Nassef, A. E. & El-Bindary, R. A. Optimization of the influencing variables on the corrosion property of steel alloy 4130 in 3.5 wt.% NaCl solution. J. Chem. https://doi.org/10.1155/2020/9212491 (2020).

    51. Rodgers, B. A. The Archaeologist’s Manual for Conservation 186–200 (Kluwer Academic/Plenum Publishers, 2004).

    52. Devanathan, M. A. V. & Tilak, B. V. K. The structure of the electrical double layer at the metal–solution interface. Chem. Rev. 65, 635–684 (1965).

    53. Parsons, R. Electrical double layer: Recent experimental and theoretical developments. Chem. Rev. 90, 813–826 (1990).

    54. Kolb, D. M., Rath, D. L., Wille, R. & Hansen, W. N. An ESCA study on the electrochemical double layer of emersed electrodes.

    Ber. Bunsenges. Phys. Chem. 87, 1108–1113 (1983).

    55. Brown, M. A. et al. Determination of surface potential and electrical double-layer structure at the aqueous electrolyte–nanoparticle interface. Phys. Rev. X 6, 011007 (2016).

    56. El-Shamy, A. M., El-Hadek, M. A., Nassef, A. E. & El-Bindary, R. A. Box-Behnken design to enhance the corrosion resistance of high strength steel alloy in 3.5 wt% NaCl solution. Mor. J. Chem. 8(4), 788–800. https://doi.org/10.48317/IMIST.PRSM/morjc

    hem-v8i4.21594 (2020).

    57. Mills, D., Picton, P. & Mularczyk, L. Developments in the electrochemical noise method (ENM) to make it more practical for assessment of anti-corrosive coatings. Electrochim. Acta 124, 199–205 (2014).

    58. El-Shamy, A. M. A review on biocidal activity of some chemical structures and their role in mitigation of microbial corrosion. Egypt. J. Chem. 63(12), 5251–5267. https://doi.org/10.21608/ejchem.2020.32160.2683 (2020).

    59. ASTM b499–09, Standard Test Method for Measurement of Coating Thicknesses by the Magnetic Method: Nonmagnetic Coatings on Magnetic Basis Metals; ASTM International: West Conshohocken, PA, USA (2014).

    60. Megahed, M. M., Youssif, M. & El-Shamy, A. M. Selective formula as a corrosion inhibitor to protect the surfaces of antiquities made of leather-composite brass alloy. Egypt. J. Chem. 63(12), 5269–5287. https://doi.org/10.21608/ejchem.2020.41575.2841 (2020).

    61. ASTM e104–02, Standard Practice for Maintaining Constant Relative Humidity by Means of Aqueous Solutions; ASTM International: West Conshohocken, PA, USA (2012).

    62. Megahed, M. M., Abdel Bar, M. M., Abouelez, E. S. M. & El-Shamy, A. M. Polyamide coating as a potential protective layer against corrosion of iron artifacts. Egypt. J. Chem. 64(10), 5693–5702. https://doi.org/10.21608/ejchem.2021.70550.3555 (2021).

    63. Mabbutt, S., Mills, D. J. & Woodcock, C. P. Developments of the electrochemical noise method (ENM) for more practical assessment of anti-corrosion coatings. Prog. Org. Coat. 59, 192–196 (2007).

    64. Zohdy, K. M., El-Sherif, R. M. & El-Shamy, A. M. Corrosion and passivation behaviors of tin in aqueous solutions of different pH. J. Bio Tribo-Corros. 7(2), 1–7. https://doi.org/10.1007/s40735-021-00515-6 (2021).

    65. Pham, T. D. From fuzzy recurrence plots to scalable recurrence networks of time series. EPL-Europhys. Lett. 118, 20003 (2017).

    66. El-Shamy, A. M. & Abdel Bar, M. M. Ionic liquid as water soluble and potential inhibitor for corrosion and microbial corrosion for iron artifacts. Egypt. J. Chem. 64(4), 1867–1876. https://doi.org/10.21608/ejchem.2021.43786.2887 (2021).

    67. Cazares-Ibanez, E., Vazquez-Coutino, G. A. & Garcia-Ochoa, E. Application of recurrence plots as a new tool in the analysis of electrochemical oscillations of copper. J. Electroanal. Chem. 583, 17–33 (2005).

    68. Zohdy, K. M., El-Sherif, R. M., Ramkumar, S. & El-Shamy, A. M. Quantum and electrochemical studies of the hydrogen evolution findings in corrosion reactions of mild steel in acidic medium. Upstream Oil Gas Technol. 6, 100025. https://doi.org/10.1016/j.upstre.2020.100025 (2021).

    69. Wadsworth, F. B., Heap, J. M. & Dingwell, D. B. Friendly fire: Engineering a fort wall in the iron age. J. Archaeol. Sci. 67, 7–13 (2016).

    70. Gad, E. A. & El-Shamy, A. M. Mechanism of corrosion and microbial corrosion of 1,3-dibutyl thiourea using the quantum chemical calculations. J. Bio Tribo-Corros. 8, 71. https://doi.org/10.1007/s40735-022-00669-x (2022).

    71. Oudbashi, O., Emami, S. M., Ahmadi, H. & Davami, P. Micro-stratigraphical investigation on corrosion layers in ancient bronze artefacts by scanning electron microscopy energy dispersive spectrometry and optical microscopy. Herit. Sci. 1, 21–31 (2013).

    72. Abbas, M. A., Ismail, A. S., Zakaria, K., El-Shamy, A. M. & El Abedin, S. Z. Adsorption, thermodynamic, and quantum chemical investigations of an ionic liquid that inhibits corrosion of carbon steel in chloride solutions. Sci. Rep. 12, 12536. https://doi.org/10.1038/s41598-022-16755-6 (2022).

    73. Abdel-Karim, A. M., El-Shamy, A. M. & Reda, Y. Corrosion and stress corrosion resistance of Al Zn alloy 7075 by nano-polymeric coatings. J. Bio- Tribo-Corros. 8, 57. https://doi.org/10.1007/s40735-022-00656-2 (2022).

    74. El-Shamy, A. M., Cathodic protection in the oil and gas industries. In Corrosion and Materials in the oil and gas industry, pp. 489–510 (2016).

    75. Jegdic, B., Radovanavic, S. P., Ristic, S. & Alil, A. Corrosion Processes nature and composition of corrosion products on iron artefacts of weaponry. Sci. Tech. Rev. 61(2), 50–56 (2011).

    76. Abdel-Karim, A. M. & El-Shamy, A. M. A review on green corrosion inhibitors for protection of archeological metal artifacts. J. Bio- Tribo-Corros. 8, 35. https://doi.org/10.1007/s40735-022-00636-6 (2022).

    77. Webber, C. L. Jr. Recurrence Quantification Analysis: Theory and Best Practices (Springer, 2014).

    78. Landolt, D. Corrosion and Surface Chemistry of Metals, Lausanne, Switzerland (ISBN 978-2-940222-11-7), 119–179 (2007).

    79. Mouneir, S. M., El-Hagrassi, A. M. & El-Shamy, A. M. A review on the chemical compositions of natural products and their role in setting current trends and future goals Egypt. J. Chem. 65(5), 491–506. https://doi.org/10.21608/ejchem.2021.95577.4486 (2022).

    80. Loeper-Attia, M. A. A Proposal to Describe Reactivated Corrosion of Archaeological Iron Objects. In Corrosion of Metallic Heritage Artefacts: Investigation, Conservation, and Prediction For Long-Term Behavior (eds Dillmann, P. et al.) 190–202 (Woodhead Publishing, 2007).

    81. Reda, Y., Yehia, H. M. & El-Shamy, A. M. Microstructural and mechanical properties of Al-Zn alloy 7075 during RRA and triple aging. Egypt. J. Pet. 31, 9–13. https://doi.org/10.1016/j.ejpe.2021.12.001 (2022).

    82. Branzoi, F., Branzoi, V. & Licu, C. Corrosion inhibition of carbon steel in cooling water systems by new organic polymers as green inhibitors. Mater. Corros. Werkstoffe Korrosion 65(6), 637–647. https://doi.org/10.1002/maco.201206579 (2014).

    83. Elsayed, E. M., Eessaa, A. K., Abdelbasir, S. M., Rashad, M. M. & El-Shamy, A. M. El-Fabrication, characterization, and monitoring the propagation of nanocrystalline ZnO thin film on ITO substrate using electrodeposition technique. Egypt. J. Chem. 66(2), 33–43. https://doi.org/10.21608/ejchem.2022.126134.5595 (2023).

    84. El-Shamy, A. M. & Mouneir, S. M. Medicinal materials as eco-friendly corrosion inhibitors for industrial applications: A review. J. Bio Tribo-Corrosion 9(1), 3. https://doi.org/10.1007/s40735-022-00714-9 (2023).

    85. Zohdy, K. M., El-Sherif, R. M. & El-Shamy, A. M. Effect of pH fluctuations on the biodegradability of nanocomposite mg-alloy in simulated bodily fluids. Chem. Paper 77(3), 1317–1337. https://doi.org/10.1007/s11696-022-02544-y (2023).

    86. Alwaleed, R. A., Megahed, M. M., Elamary, R. B., El-Shamy, A. M. & Ali, Y. S. Remediation mechanism of microbial corrosion for iron artifacts buried in soil by using allium sativum (garlic extract) as a natural biocide. Egypt. J. Chem. 66(6), 291–308. https://doi.org/10.21608/ejchem.2022.158454.6850 (2023).

    87. Eessaa, A. K. & El-Shamy, A. M. Review on fabrication, characterization, and applications of porous anodic aluminum oxide films with tunable pore sizes for emerging technologies. Microelectr. Eng. 279, 112061. https://doi.org/10.1016/j.mee.2023.112061 (2023).

    88. Eessaa, A. K., Elkady, O. A. & El-Shamy, A. M. Powder metallurgy as a perfect technique for preparation of Cu-TiO2 composite by identifying their microstructure and optical properties. Sci. Rep. 13(1), 7034. https://doi.org/10.1038/s41598-023-33999-y (2023).

    89. Ghazy, E. A., Abdel Ghany, N. A. & El-Shamy, A. M. Comparative study of cetyl trimethyl ammonium bromide formaldehyde, and isobutanol against corrosion and microbial corrosion of mild steel in chloride media. J. Bio. Tribo-Corrosion 9, 64. https://doi.org/10.1007/s40735-023-00782-5 (2023).

    90. Abdelshafeek, K. A. & El-Shamy, A. M. Review on glucosinolates: Unveiling their potential applications as drug discovery leads in extraction, isolation, biosynthesis, biological activity, and corrosion protection. Food Biosci. 56, 103071. https://doi.org/10.1016/j.fbio.2023.103071 (2023).

    91. Shehata, M. F. & El-Shamy, A. M. Hydrogen-based failure in oil and gas pipelines a review. Gas Sci. Eng. 115, 204994. https://doi.org/10.1016/j.jgsce.2023.204994 (2023).

    92. Elashery, N. H., Megahed, M. M., El-Shamy, A. M. & Saleh, S. M. Archaeometric characterization and conservation of bronze patina on archaeological axe head in military museum, Cairo. J. Archaeol. Tour. Must 2(1), 23–33 (2023).

    93. Selwyn, L. Metals and Corrosion: A Handbook for Conservation Professional (Canadian Conservation Institute, 2004).

    94. Schaefer, K. & Mills, D. J. The application of organic coatings in the conservation of archaeological objects excavated from the sea. Prog. Org. Coat. 102, 99–106 (2017).

    95. Kiele, E. et al. Methyl-modified hybrid organic-inorganic coatings for the conservation of copper. J. Cult. Herit. 15, 242–249 (2014).

    96. Hollner, S., Mirambet, F., Rocca, E. & Reguer, S. Evaluation of new non-toxic corrosion inhibitors for conservation of iron artifacts. Corros. Eng. Sci. Technol. 45, 362–366 (2010).

     


     

     

    免責聲明:本網站所轉載的文字、圖片與視頻資料版權歸原創作者所有,如果涉及侵權,請第一時間聯系本網刪除。

      標簽:
    相關文章
    無相關信息
    日韩人妻精品久久九九_人人澡人人澡一区二区三区_久久久久久天堂精品无码_亚洲自偷自拍另类第5页

    <i id="p68vv"><noscript id="p68vv"></noscript></i>
      <track id="p68vv"></track>

        <video id="p68vv"></video>
      <track id="p68vv"></track>
      <u id="p68vv"><bdo id="p68vv"></bdo></u>

    1. <wbr id="p68vv"><ins id="p68vv"><progress id="p68vv"></progress></ins></wbr>
      <code id="p68vv"></code>
        <output id="p68vv"><optgroup id="p68vv"></optgroup></output>
    2. 偷窥国产女洗浴在线观看视频 | 制服丝袜亚洲中文欧美在线 | 亚洲三级在线免费 | 在线观看亚洲人成网址 | 亚洲欧美中文专区 | 先锋影音亚洲国产精选 |