The interaction between mechanics and electrochemistry in extremely thin electrodes
[abstract] During corrosion, mechanics and electrochemistry interact always to each other. Although there are thermodynamic studies about the stress-caused change in equilibrium potentials, few multiscale computations have been reported in the literature. In this presentation, we report multiscale computations of the interaction between mechanics and electrochemistry, where first-principals calculations and continuum calculations by solving a modified Poisson-Boltzmann equation are carried out on electrode and electrolyte, respectively, and the electric potential produced by electrons and induced charges links the first-principles and continuum calculations. Monolayer graphene and multilayer graphene films are taken as an example to illustrate the hybrid approach. The calculation results illustrate the quantum capacitance in monolayer graphene, the charge-induced deformation in multilayer graphene, and the Li absorption behavior on monolayer graphene with vacancy. Based on Fermi level change and Dirac point shift, the capacitor of the electrochemical cell is consisted of two capacitors in series, the quantum capacitor and the capacitor of the electric double layer. Thus, the total capacitance can be easily calculated once the capacitances of the two capacitors are available. Simple and analytic formulas are proposed for the three capacitances to predict, in sufficient accuracy, the behavior of capacitance versus potential. The surface eigenstress model is further developed to analytically predict the charge-induced deformation in multilayer graphene films. The charge-induced deformation is asymmetric with respect to negative and positive charges, and the thickness-dependent minimal inplane C–C bond length occurs at the same positive charge of about 3.81x1014 |e|/cm2 for the 1 to 6 layers graphene films. The calculations reveal that Li absorption can be significantly affected by the type of electrolyte and the amount of charges. In CCl4 solvent, Li can absorb on a monovacancy of graphene when the charge of electrode is lower than 1.00x1014 |e|/cm2. But in water, only negative charged electrode can lead to Li absorption on the monovacancy.
時(shí)間:2016年8月10日 09:00-09:30
報(bào)告人:張統(tǒng)一
個(gè)人簡介
張統(tǒng)一院士
中國科學(xué)院院士,研究領(lǐng)域包括材料的機(jī)械性能、微觀力學(xué)/納米力學(xué)、微結(jié)構(gòu)與材料性能的關(guān)系、鐵電和壓電材料、薄膜、納米線及納米管、微橋/納米橋?qū)嶒?yàn)、擴(kuò)散與相變。從事材料力學(xué)性質(zhì)的研究。預(yù)測并證實(shí)了鋼鐵扭轉(zhuǎn)和剪切載荷下的氫脆現(xiàn)象。澄清了電絕緣裂紋面上電邊界條件,發(fā)展了壓電線性和非線性斷裂力學(xué);實(shí)驗(yàn)證明導(dǎo)電裂紋的電斷裂韌性為材料常數(shù),構(gòu)筑了電致斷裂的理論框架。發(fā)展了微觀/納觀力學(xué):建立了微/納橋測試?yán)碚摵头椒氨∧?基體系統(tǒng)中產(chǎn)生位錯(cuò)、微/納孿晶和裂紋的臨界厚度理論;給出了應(yīng)力腐蝕中裂紋、腐蝕膜和位錯(cuò)交互作用的理論解。曾獲國家自然科學(xué)二等獎(jiǎng)二次、香港裘槎高級研究學(xué)者獎(jiǎng)、美國ASM International Fellow獎(jiǎng)和中國科學(xué)技術(shù)協(xié)會(huì)青年科技獎(jiǎng)。
張教授以第一作者及聯(lián)合作者身份共發(fā)表140多篇SCI學(xué)術(shù)論文。在斷裂力學(xué),微觀、納觀力學(xué)和材料的氫致開裂等領(lǐng)域取得了多項(xiàng)創(chuàng)新性成果,擁有兩項(xiàng)美國專利和一項(xiàng)國家專利,獲兩次國家自然科學(xué)二等獎(jiǎng)(1987和2007年度),2001年獲得美國ASM International Fellow,2003年獲香港裘槎高級研究學(xué)者獎(jiǎng)。收到過5張SCI賀卡和1張Elsevier賀卡,祝賀其論文引用次數(shù)名列本領(lǐng)域前1%。組織并主持三次國際學(xué)術(shù)會(huì)議,包括首次在中國召開的第八屆國際斷裂基礎(chǔ)大會(huì)。特邀為Mechanics of Material,International Journal of Fracture,Engineering Fracture Mechanics,Composites Science & Technology等學(xué)報(bào)編輯了八期特刊。
其中在香港科技大學(xué)完成的4篇代表性學(xué)術(shù)論文,截至2008年12月30日,SCI引用次數(shù)分別達(dá)到245,180,147和134次。參與撰寫三本著作。獲得2項(xiàng)美國專利。并受邀在國際、國內(nèi)學(xué)術(shù)會(huì)議上做大會(huì)特邀報(bào)告32次。2002年被中國教育部《面向21世紀(jì)教育振興行動(dòng)計(jì)劃》“聘請世界著名學(xué)者項(xiàng)目”聘請,2001年獲美國ASM International Fellow Award,1988年獲中國科學(xué)技術(shù)協(xié)會(huì)青年科技獎(jiǎng),1987年獲中國國家自然科學(xué)二等獎(jiǎng)(十獲獎(jiǎng)人中排第三)。
免責(zé)聲明:本網(wǎng)站所轉(zhuǎn)載的文字、圖片與視頻資料版權(quán)歸原創(chuàng)作者所有,如果涉及侵權(quán),請第一時(shí)間聯(lián)系本網(wǎng)刪除。
-
標(biāo)簽: 張統(tǒng)一, 2016第四屆國際腐蝕工程大會(huì), 主旨報(bào)告

官方微信
《腐蝕與防護(hù)網(wǎng)電子期刊》征訂啟事
- 投稿聯(lián)系:編輯部
- 電話:010-62316606-806
- 郵箱:fsfhzy666@163.com
- 腐蝕與防護(hù)網(wǎng)官方QQ群:140808414